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Received 2 October 1991, in final form 5 May 1992

Abstract. A continuous-time approXimation for the leamning process in single-layer
percepirons is presented. Both statics and dynamics are (reated by the replica method
within the framework of the replica symmetric theory. The Adaline rule extended by a
decay factor is investigated in detail, especially for linearly-separable problems. It is shown
that the poor generalization ability of this rule near o = 1, the so called overfitting, can
be cured by an appropriate decay factor or by an appropriate training time.

1. Introduction

In the last few years increasing attention has been paid to the dynamical description of
the learning process in perceptrons [1-6], for a general review, see [7, 8]. A perceptron

[9,10] is a simple tool of N input units (§; = +1,7 = 1,...,N) connected to the
single output unit s = +1 via connections w, {¢=1,..., N), where the caiculation
rule is
1 X
s=sgn| — w;€; =8}, 1
(7 & vt =) ()

The & parameter, which is called the threshold value, will be supposed to be zero in
this paper. The problem of learning in such a perceptron is that given p input patterns
{€¥ }iz1,... v with the corresponding outputs (¥ (» = 1,...,p) we have to find the

connections w; which give ‘good answers’, ie. the output s” = sgn (VIW por w,-E,!’)
will be equal to the desired output ¢ for all v

N
1
R R R 2
IR 2 @)
These equations are equivalent to the requirement that all the stabilities
i
A, = WCV g:w,g;’ 3)

should be positive,
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A possible solution to the learning problem is the so called A-rule [11}. One
introduces a cost (or energy) function E = E(A,), which measures the learning
error in terms of the stabilities (equation (3)), e.g.

p
En = Z(I-Ay)ne(l_Av) (4)

r=1
where ©(«) is the Heaviside function, and » can be 1,2, ... . Possible good solutions
can be found by minimizing E, with respect to w; ({ = 1,...,N). A gradient

descent search, wherein each learning step w, is updated in proportion to dw; =
—8E /8w, can find some minima. A continuous-time approximation of this rule will
be investigated in this paper, ie.

_SE

Wy = —7—
GW;

; i=1,...,N. &)
Hertz et al [2] realized that if the right-hand side of equation (3) is linear in w; — s,
then finding the static solution w; = 0 is equivalent to solving the whole dynamical
problem: both of these require determining the minima of the cost function of the
same form. To see this, let us suppose an energy function of the form

1 1
) 1 £
and make a Laplace transform of the dynamical equation (5) (L{f(t)] = f(s))
—0)= - Mg
swi(s) —w;(t=0)= ZAijwj(s) S % Apw;(s). Q)]

b

For simplicity we take a ‘tabula rasa’ initial state, ie. w;(t =0) = 0 V¢, and
if we move the sw;(s) term to the right-hand side, we obtain an equation of the
form 8E'/dw, = 0, where £’ and E (equation (6)) differ only in the value of the
parameters A, and A,

Ay — A fs Ay — Ay + 5. 8

Unfortunately the cost functions of the form of equation (4) have a very strong
nonlinearity in the ©(x) function, so we need a smocther one to take advantage of
the transformation (8). The Adaline rule [12] is defined by the cost function

1
E= 52(1—-&#)2 (9)

and forces all the stabilities to be equal to 1. This rule has the desired form of
equation (6) with A, =1, A, = 0 and

1 v ey 1 v~
A.‘_f='ﬁzy:5;fj a£=\7———ﬁ;&c . (10

Non-zero X, introduces a decay which penetrates the solutions with very long con-
nection vectors (w? = ¥, w? > 1). Since this decay might be useful, for other
purposes, we keep the cost function in the form of equation (6) with A;; and g;
given by equation (10).
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2. Random Boolean functions

From now on we will take the thermodynamic limit, when both the number of input
units (V) and the number of input patterns (p) go to infinity, but their ratio, o =
p/N, remains finite. We choose the input patterns randomly, ie. £¥ = +1 with
equal probability, and the outputs (¥ = %1 will also be random for random-Boolean
functions. We are interested in quantities which characterize the learning, such as

o]
= <<%Du>> 12)

where (- --)} means an average over the random input and output. One can calculate
these quantities with the help of the averaged free energy using the replica method

f= llm <<ﬁN In Tr,, exp -8 E({w; })>> (13)

where E({w;]}) is given by equation (6); in the limit 8 — oo, f describes the minima
of E.

Since there is no constraint on w,, Tr,, means an integration from —oc t0 +oo
for all w;. The method of calculation follows that of Amit et al [13], and gives

1 A2z
r=tm{L 3" rptap + 2 2(-v+mrnar A3 g +e,) a9

agp a, B

where B is a n x n matrix, B, = 6,5 + 89,54, and

-1
(Dnz-,é-—ﬁlnTrwaexp—ﬁ( Ew -—Z ﬂww) (15)

agf

Qaa = G Taa = To
(16)
dap = 4 Tag =T (a#0)
and introducing new variables
e=p8(qp-aq) p=r-27
17)

q=q R=r,/3

one can take the limit n — 0, giving

f=1k —£/q+f\+?\23/ : + 2 fin(1 4+ 9) 4 -2 1+¢)( /)

SR ﬁ} 12\1+<.o ) 25[ THo] THAI

18

a0 (18)
2A ¥

O(p, R) = ‘D(ﬁ)+ ln(A +p) -
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The order parameters  and g are

o= <<§ Z.-:(‘""?’ - <w.->2)>>
o= (7 5o

where (-} means the temperature average. The parameters K and p are weight
functions carrying the way of averaging. Since we need the limit as § — oo, we
are interested in the minima of the energy, in this limit ¢ gives the length of the
connection vector. The other quantity we wanted to know was M, equation (11),
which can be obtained by taking the derivative of f with respect to A,

18f _ _»

(19)

The values of , g, R and p are given by the saddle-point equations
1 o
= = 21
L W P T7v% @D
R
q4= 77— R= —.—‘\—( +q 22
T (A + p)t (i+ 1+a) @)
The first two equations (21) are closed, giving
v (23)

1 + @
This equation for  is the same as that of Hertz et a/ [2] for thelr Green'’s function.
Using this, ¢ and M can be expressed by u = pg

u?

=¥ - 2
M= a)\l q Al (24)

a— u?
where

=1+ e+ r - /(1 +at+r;)?-4al. (25)

Let us start with the static problem. We can recover the original Adaline rule
by the substitution A; = 1 and A, = 0. The results are shown in figure 1. The
singularity of g at o = 1 is connected to the capacity of the Adaline rule; up to this
value of «, all the stabilities are set to be 1 by the end of the learning process.

The time needed to reach this state can be characterized by the average relaxation
time of M
gy Jo HIM() = Milemtdt | sOM(5)/5+ Mo /s
M a0 fD [M(t) - M Je-stdt 10 M_ —sM(s)
where M., = M(t — oo) is the static value of M. M(s) is given by the same
equation (24), but we have to use A, = 1/s and X, = s. After a little algebra, one
cbtains

(26)

1/(1 - a)? a<l
= 1 _ 205‘ ‘:[ /( )7 (27)
l-a)lt+a-|l-a |af(a-1)* a>l1.
Up to now we have re-derived some results of Hertz ef al [2] and Opper [1]. The
approach introduced above will be generalized to the calculation of other quantities
in the next sections.
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Figure 1. 'The length of the weight vector (g) and the average magnetisation (M) as
a function of the size of the leaming set (o = p/N) for Adaline learning (A = 0).
The solid lines refer to random-Boolean functions and the dashed lines refer to linearly-

sannmhlae finstione
Supaiauie IRI-LIULD.

3. The correlation function

As an example, let us calculate the following correlation function

I/ A\
Cwﬂ=«%ZWMMWW

1 oo oo o
=y /. dsf_ dse’™t¥' C(s, 5) (28)
-0 -100
where

cma=«§2mem». (29)

In particular, C(¢,t) will give us the g(t) function. Let us denote by C,(t,1t')
tha snarealatinn fimotinm far mandam Danlane fiinstinmne Th Aatarmeina 27700 0 2% s
uiv wiiviaiivlil luliviivil vl 1laluvini-puvivdll Luiviiuvil. IV UGG LG ""0( 5,y b') wC

introduce two systems; S, depending on the parameters A, and ),, and $, depending
on A, and A,. The Hamiltonian is

H({w}, {0} 5, 8) = E({w;}; A, Ag) + BE({dn}; A, A + HZ“’:“‘E’.’ (30)

where E and £ have the previous form of equation (6), A; and A; (j = 1,2) depend
on s and 3 respectively, equation (8).

We need the external field H to extract the desired term, equation (29), by a
derivation of the free energy and after that we set H = 0. On the other hand, when
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(21) and (22).

H =0, S and § are independent their minima are given by the previous equations

The method of calculation of the free energy with ¥ (equation (30)} is as before,
but the non-zero H introduces an interaction between those replicas of S and §

whose replica indices are identical, so we have
-1
—_— -BH
AN InTre >>
1 1
= fo(ﬁ) + }iﬂ{; Z(raﬁQGﬁ + f'aﬁdaﬁ) + ; Eaa,ﬁcaﬁ
agp g
- 22 2y gt & 1
2ngl+gnglg _)_\_1+2ﬂnTrlng+ 2ﬁnTrlng} (31
where B and £ are 2n x 2n matrices, and A, is a 2n vector
(L85 | 5
B=
\ Be L+ 8g
(32)
Ay — 27,4 Hl-g
™ _Taﬁ '
é:
_raﬂ
H;— a Ay —2r,,
\ .y )
a8 and aaﬂ.

A=A AL LA
and [ is a n X n unit matrix.
The saddle points are taken with respect t0 v g, Qags Fags dags ©
The replica symmetric ansatz is the same as before, equation (16), with the additional
(33)

Qoo = Gy
(a # B8).

relations
caa = cﬂ

Cy 8 = a, B =a,
Since ¢, and ¢, characterize the interaction between the replicas of the two
systems (S and S) and in the H = 0 case we can suppose this interaction to be

independent of the choice of replica indices, the difference ¢, — ¢; should vanish
as H — 0. The same is true for a, — e,. Bearing in mind these relations, after
(34)

determining the eigenvalues of B and F, we arrive at the value of Cy(s, §) (details

-

are left to the reader)
uil
Cols,8) = AL
o(s,3) o —un ™M
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where u depends on s and %4 depends on & but both functions are given by the
equation (25).
To carry out the inverse Laplace transformation we introduce the notation

g=u/Va g=i/Va (%)

and rewrite C,(s,3) as

g4
1—g8

1 99 3
- ‘lrl—r{ll 1~ *ygg)\l)‘l
=lim Y 4" 'g"A " A, (36)

—1
v n=1

Cy((s,3) = W

Now the inverse Laplace transforms with respect to s and 5 can be performed
separately. With the notation

t
G, (1) = ] £ g™ ())(r) dr @7
we have
Cylt, ) = lim ~ iv"Gn(t)Gn(t’). (38)
Ty n=1

The functions G, (t) can be calculated

1-— e—(b-a cos )t

a m
G"(t)m;jo dd b—-acosd

where a = 2\/a and b =14 o+ A, where A is the ‘static’ value of A, (A, = A+ ).
First calculating the sum } .., v" sin(n1) sin{n’) in equation (38) and then taking
the limit v — 1 gives a Dirac’s delta function times %, so finally we have

sin ¥ sin(nd) (39)

1 —e~(b-acosd)t | _ o—(b-acosd}t’

2 x
Co(t, 1) = ;_ﬂ_/; d9 sin® ¥ (40)

b—acosd b-—acos?d

For the Adaline case, figure 2 shows the ¢(¢) = C(¢,¢) function and the M(t)
function for a = 0.9, where M(t) is simply

M(t) = %Gl(t) (41)

see equations (24,35,37).
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i
) 10 20 30 20 55

Figure 2. 'The time evolution of M, equation (41), and g, equation (40) at t = ¢/, for
random-Boolean functions at & = 0.9 in the Adaline-leamning case. The static value of
g, i.e. the limit ¢ — oo, can be obtained from equation (24). Since M(t — o0) =1
for o = 0.9, see figure 1, we do nol have to normalize the M (t) function.

4. Linearly-separable functions

A linearly-separable function is defined through a reference (or teacher) percep-
tron with a weight vector {F;},_,  .' to a given input {{;}, the correct answer is
the sign of 3, F;£;. To fix the length of the teacher perceptron, we suppose that
IZ }‘2 =1.
A natural quantity characterizing the learning performance can be the cosine of
the angle between the weight vectors of the ‘teacher’ (F) and the ‘student’ (w)

_ LZ,‘ f,-w.->> _ «% Zi fiwi»f
F=e((Eaiii) - = 8 42)
<<\v/‘%_2gw3 ¢ v ((7%2. w?)f

where we have used the fact that ¢ = 4 3, w? is a self-averaging quantity. The so
called generalization ability (P,), which gives the probability of the correct answer
from the student perceptron to a new randomly-chosen input, can be expressed by F
see [14]

Pg=1—(1/1r)cos'lF. 43)

To describe the learning process in this case, we use the same method as before,
taking the cost function of equation (6), we calculate the averaged-free energy with the
help of the replica-symmetric theory. The only difference is in the way of averaging.

Since the output (¥ is not an independent-random variable, but is given by the
relation

v 1 - v
¢ =sgn(—ﬁ§};£’) v=1,...,p (44)
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we have to be more careful when we average terms like

1 Vay
<<exp TN zi:b.'pf,' ¢ >>{§v},=,_”N (45)

where b;, is a quantity of order 1. The averaging in equation (45) can be performed
if N goes to infinity and F; o« O(1) Vj In this limit both the quantities, 2, =
):. b;, €Y in equation (45) and z, = 7—- >; F;&} in equation (44), are Gaussian

vanables, although they are correlated as
1
(o) = Z Fib;. (46)
2

In this way, the averaging in equation (45) according to £ — s can be replaced by
the averaging over z, and z,, giving

e (Ea ,) [1 + erf(\/_N Z}‘ b; )] @7

From now on, the calculation continues in the standard way and we will have the
same order parameters as before, equation (19), plus a new one coming from the
argument of the erf(x) function in equation (47)

y= <<% Xijf.&w.-)» 8

with its weight function s. We can see that in the zero temperature limit y is just the
numerator of equation (42).
The free energy is

f= %R‘P_g(Q+%) +ys+ Q(p, R,8)+ ¥(p,q,y) — — )\2+fo(.3)

In( A, + p) _ s+ R
28 2(Az+ 0) )

= @ fyzi,_9.02
V=249 + s (M 2\/;%).

In the 8 — oo limit, the saddle-point equations are

d =

_ 1 _ o
A W P=T+e
1 2 o
- =./% A
YENEe SEVITF 0

R+ s® a (2 \/5 )
= = ——— A - -
Gor o T arep(Mte-yovh
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where the first two equations are the same as in the random case, equation (21),
giving the same expression for the u(A,) function, equation (25).

The other quantities of interest, such as y, ¢ and M, can be expressed by this
u(A,) function

y= \/% Uy (51)

2
q = — (1+3§‘--%H)Af (52)

o — u?

M=£[1+—2ﬂ:(a—u)]/\l. (53)

For the static Adaline problem, ie. A, = 1 and A, = 0, the length of the weight
vector w, i€. g, equation (52), and the average stability, ie. M, equation (53),
behave qualitatively as in the random case, equation (24), for & « O(1); only a small
correction is due to the linear separability of the input patterns. For « » 1, this
property of inputs becomes important, and both q and M tend to finite values as
a -+ oo, rather than of tending to zero, showing that the network was able to learn
somcthing, ﬁgure 1. The average relaxation time, defined by means of M, equation

nnon PO T 1t T otinmn o all ameea ez

(LD), is similar to the case of random luubuuub, u{uauuu \4 l) The small correction

disappears for o — oo
1 20 1 -«
(lua)z(l__;l-2a/1r) a<l
Tm = (54)

o 2 a—-1
1= a) (I‘E 1+(2/1r)(a—2)) a>1.

5. The generalization ability

Although the above quantities, equations (51-54), characterize the learning peffor-
mance, the most important quantity is the generalization ability of the network,
equation {43), which will be measured by F, equation (42), in the rest of the paper.

In the static case we can use equations (51) and (52) directly to obtain the
F(X,,a) function

— 2
F= l_ﬁ”— (55)
57r+a—2u

where u is the previous expression of equation (25). Since F' depends on X,, it may
be worth asking whether F is maximal at a given value of X,. Solving the equation
F/8\, = 0 gives

/\gpt = %‘ﬂ’ -1 (56_)

for any value of o = p/N, and at this point

Fopt=\/%[%1r+a—\/(%1r+a)2—4a : 57
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This generalization ability should be compared to the Adaline case [14], where
A, =0, giving

afl — a) o<l
IT—a
Faa = (58)
a1
a>1

1
_2.71-+a_2

and to the Hebb case [14, 15], which can be recovered in the limit A, — oc where the
learning process stops in a very short time, making w; proportional to «;, equation
(10), which is nothing but the Hebb rule

[
Flens = 1/;}—_'_—(; (59

(see figure 3).

A=
—_— a2l

Hebb
]
f
'
! . o
1 2 ) 4 5

Figure 3. ‘The cosine of the angle between the weight vectors of the teacher perceptron
(F) and of the student perceptron () as a function of o = p/n for linearly-separable
functions equation (42). The solid line denotes the network with optimal weight decay.
The dashed line and the dash-dotted line refer to the Adaline learning (A = 0) and to
the Hebb rule (A — o) respectively.

In the limit o >> 1, both £, and F,, behave like \/1 — (#/2a)(1—2/x), 50
using ASP* instead of )\, = 0 makes no difference in this limit. The region where
non-zeto A, can be useful may be estimated by the region where the inequality
Fpg < Fye,, holds, ie. when the Adaline rule is even worse than the Hebb rule.
This happens if

l-ir<(a-1)<j7-1. (60)

To describe the time evolution of F', we need the functions y(¢) and g(t). The
former can be obtained by the inverse Laplace transformation of eguation (51) with
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the substitution of equation (8), giving y(t) = \/2a/x G,(t). The latter requires
the calculation of the correlation function of equation (28). The Laplace transform
of C(t,1') can be calculated in the same way as in the random case, giving

ui

C(s,8) =

5 ) ) :
o - ufl [1+;(a_u_u)]/\1'\1 (61)

where we have used the notation of the previous section. The inverse Laplace
transformation is made with the help of the same trick as before equation (36), so
we have .

C(t, )= (1 + g;) Co(t,t") — %‘-’-C,(t,t’) (62)

where C,{t,t'} is given by equation (40} and

(1 — e—{b-a Cos'ﬂ)t) (1 — g-{b~a cosﬂ)t')
(b— acos9)?

2 T
C,(t,¥) = 2%] d¥ sin? 9 cos ¥
[+}

sin® 9 sin? ¥’

a? [T dJddy’

o

l1-e l1-—e
(b—acos??) (b— acos?d)

cosV’ —cosd
—(b—a cos )t —(b—a cos9")¢t'

(63)

where ¢ = 2v/a, b=1+ o+ X as before, and [ means principal value integration.
Fortunately, if ¢ = ¢/, the second term in C,(¢,t') disappears (because it changes
sign for ¥ ~ 9'), s0 ¢(t) = C(t,t) is given by a one-dimensional integral. The
F(t) = y(t)/\/q(t) function for o = 0.9 and for various values of X, is shown in
fipure 4.

F =09

A=m2-1

S 4 S P e ) W 4 v

t 75 0 %0 %0 100

Figure 4. The generalization ability, measured by F, equation (42), as a function of
the training time for & = 0.9. For the Adaline learning (A = 0, dashed line), there is
an overfitting effect in time: at ¢ » 18 the generalization ability is at a maximum. The
optimal decay ensures a smooth approach to the optimal generalization (A = 7 - L,
solid line); higher decays give worse generalization (e.g. A = 3, dash-dotted line).
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In the limit t — 0, we get back the generalization ability of the Hebb rule
{equation (59)), as we should, and for ¢ — oo, we arrive at the static value of F
(equation (55)). If the latter is the smailer, we can expect an overfitting phenomenon
in time. The generalization ability first increases and later decreases to its static value.
For the Adaline learning (A, = 0), this ‘overfitting region’ of « is given by equation
(60). Unfortunately, there is no simple analytical formula for the optimal training
time, so this quantity can only be obtained numerically.

6. Conclusion and possible extensions

We have shown that the continuous-time approximation of the learning process in

single-layer perceptrons can be treated by the replica method. The crucial point of

the approximation is that if the dynamical equations (equation 5) are linear in the

dynamical variables w;, we can use the replica method on the Laplace-transformed

equations. As a demonstration, we calculated the dynamical properties of the Adaline

rule extended by a decay factor for the case of random and linearly-separable-Boolean

functions. For the latter, an optimal decay, A\3F* = %'n' — 1, was found in the sense -
that this decay optimizes the generalization ability of the network.

For the original Adaline rule, the poor generalization properties near a = 1
are due to the long training time, and an appropriate training time can give as
good a generalization as we have for the optimal decay (see figure 4). We have
found that these overfitting effects occur mainly in the region « € (a_, o, ), where
a, =1+ (r-1)

A straightforward extension of the present model could be the case of the ‘unre-
liable teacher’. There are several ways of defining an ‘unreliable teacher” [S]; here we
take only the simplest case, where instead of equation (44) the outputs in the training
set are -

(V' =¢, sgn(#z.ﬂ{;) v=1,...,p (64)
i

where ¢, = +1 with probability (1 + €)/2 and constant during the learning process.
Equation (64) means that, for some inputs, the teacher does not know the correct
answer but he is faithful to the incorrect ones. In this case, the average free energy
differs from that of equation (49) only in the expression of ¥, instead of the term
—2,/2/myA, we have e times the same expression. This means that in the equations
(51)-(55) we have to replace \/2/x by \/2/me and 2/m by 2e* /.

- The most important changes due to € < 1 are those in A%‘“(e) = 7/2¢® — 1 and
in the width of the ‘overfitting region’ ay(e) = 1 £ (7 /2¢®* —~ 1} we need bigger
decay and the overfitting region becomes wider. Other types of noises in the learning
process can be treated in a similar fashion.

It is a more difficult matter to apply this method to the cost functions of the type of
equation (4). For example, if we choose E; = 3°,(1-4,)?©(1-4A,) (the so called
Adatron rule), and introduce new dynamical variables V,, := (1 - A )O(1-A)),
the equations of motion will be

av, g 1 1
£ = - —| = = - 1)?
5t = 95y [2§Q,,,,vpvv+2)\2 E“:(v“ 1)] (65)
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where Q,, = N~! L& & is the overlap matrix of the input patterns. If we are

]
interested only in the static properties, the expression [-- -] in equation (65) is a good
Lyapunov function; the minima of this expression with the constraint V, > 0(u =
1,...,p) give the stationary solutions of equation (65). This problem can be solved
by the replica method. On the other hand, the constraint of V, x(t) > 0 makes the
Laplace transformation useless, we cannot use equation (65) to describe the dynamics.
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