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Learning dynamics: a replica approach 
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Received 2 October 1991, in final form 5 May 1 B Z  

AbstncL A mntinuous-time approximation for the learning process in single-layer 
percepmns is presented. Both statim and dpami= are treated by lhe replica method 
within the framework of the replica symmetric theory. The Adaline rule extended by a 
decay factor is investigated in delail, especially for linearly-separable problems. It is shown 
that the poor generalization ability of this mle near U = 1, the so called wefitting, can 
be Nred bj an appropriate decay factor or bj an appropriate training time. 

1. Introduction 

In the last few years increasing attention has been paid to the dynamical description of 
the learning process in perceptrons [ 1 4 ,  for a general review, see [7, SI. A perceptron 
19,101 is a simple tool of N input units (ei = f l ,  i = 1 ,  . . . , N) connected to the 
single output unit s = ?cl via connections wi ( i  = 1,. . . , N), where the calculation 
rule is 

N 
s = sgn (i wit i  - 6 ) .  dT. i=1 

The 6 parameter, which is called the threshold value, Will be supposed to be zero in 
this paper. The problem of learning in such a perceptron is that given p input patterns 

with the corresponding outputs C”  (U = 1 , .  . . , p )  we have to find the 
connections w; which give ‘good answers’, ie. the output s“ = sgn ( m.C i w..$!’ t , )  

will be equal to the desired output C” for all U 

,_,,, 

N 
U =  1 ,  . . . , p .  = sgn (- 1 wit:) 

dT. , = I  

These equations are equivalent to the requirement that all the stabilities 

should be positive. 
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A possible solution to the learning problem is the so called &rule 1111. One 
introduces a cost (or energy) function E = E(A,), which measures the learning 
error in terms of the stabilities (equation (3)), e.g. 

n r 

E,  = c(1- A,)"@(l - A , )  
"=I 

(4) 

where @(z) is the Heaviside function, and n can be 1 , 2 , .  . . . Possible good solutions 
can be found by minimizing E, with respect to wi (i = 1 , .  . . , N). A gradient 
descent search, wherein each learning step wi is updated in proportion to 6w, = 
- a E / a w i ,  can find some minima. A mntinuous-time approximation of this rule will 
be investigated in this paper, Le. 

Hertz ef a1 121 realized that if the right-hand side of equation (5) is linear in wj  s, 
then finding the static solution Ziri = 0 is equivalent to solving the whole dynamical 
problem: both of these require determining the minima of the cost function of the 
Same form. 'RI see this, let us suppose an energy function of the form 

1 1 
2 . .  

E = - ~ ~ ~ w ~ w ~  + A,  a iwi  + 5 ~ 2  w' 
i If 

and make a Laplace transform of the dynamical equation (5) ( L ( f ( t ) ]  = f(s)) 

For simplicity we take a 'tabula m a '  initial state, Le. wi( l  = 0) = 0 V i ,  and 
if we move the s w i ( s )  term to the right-hand side, we obtain an equation of the 
form aE'/awi  = 0, where E' and E (equation (6)) differ only in the value of the 
parameters A, and A, 

A, + A,/s A, + A, + s.  (8) 

Unfortunately the cost functions of the form of equation (4) have a very strong 
nonlinearity in the O ( z )  function, so we need a smoother one to take advantage of 
the transformation (8). The Adaline rule 1121 is defined by the cost function 

and forces all the stabilities to be equal to 1. This rule has the desired form of 
equation (6) with A, = 1, A, = 0 and 

Non-zero A, introduces a decay which penetrates the solutions with very long mn- 
nection vectors ( w 2  = Ci wf > 1). Since this decay might be. useful, for other 
purposes, we keep the cost function in the form of equation (6) with Aij and aj 
given by equation (10). 
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2. Random Boolean functions 

From now on we will take the thermodynamic Limit, when both the number of input 
units (N) and the number of input pattems (p) go to infinity, but their ratio, a = 
p / N ,  remains finite. We choose the input pattems randomly, i.e. = f l  with 
equal probability, and the outputs C" = f l  will also be random for random-Boolean 
functions. We are interested in quantities which characterize the learning, such as 

where ((. . .)) means an average over the random input and output. One can calculate 
these quantities with the help of the averaged bee energy using the replica method 

f =  N-m lim ((-'lnTr,exp-9E({w;)))) P N  

where E ( { w i ) )  is given by equation (6); in the limit 
of E. 

for all w i .  The method of calculation follows that of Amit et a1 [13], and gives 

- co, f describes the minima 

Since there is no constraint on wi ,  Tr, means an integration from -co to +co 

where is a n x n matrix, Bap = 6-8 + Pqop, and 

and introducing new variables 

one can take the limit n -* 0, giving 
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The order parameters 'p and q are 

where (. . .) means the temperature average. The parameters R and p are weight 
functions carrying the way of averaging. Since we need the limit as p - 03, we 
are interested in the minima of the energy, in this limit q gives the length of the 
mnnection vector. The other quantity we wanted to know was M, equation (ll), 
which can be obtained by taking the derivative of f with respect to A,  

The values of 'p, q ,  R and p are given by the saddle-point equations 

The first two equations (21) are closed, giving 

(23) 
a 

'p-' = A, + G' 
'Illis equation for 'p is the same as that of Hertz ef a1 [2] for their Green's function. 
Using this, q and M can be expressed by U = p'p 

where 
u = 4[1+ a + A, - J(I+ a + A,jz -4a]. (25) 

Let us start with the static problem. We can recover the original Adaline rule 
by the substitution A, = 1 and A, = 0. The results are shown in figure 1. The 
singularity of q at a = 1 is connected to the capacity of the Adaline rule; up to this 
value of a, all the stabilities are set to be 1 by the end of the learning process. 

The time needed to reach this state can be characterized by the average relaxation 
time of M 

where M ,  = M(t -+ CO) is the static value of M. M ( s )  is given by the same 
equation (24), but we have to use A, = l/s and A, = s. M e r  a little algebra, one 
obtains 

. . .  

Up to now we have rederived some results of Hertz er a1 [2] and Opper [l]. The 
approach introduced above will be generalized to the calculation of other quantities 
in the next sections. 
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Figure L ?he lenglh of the weight vector ( 9 )  and the average magnetisation (M) as 
a tunction of the size of the learning set (oi = p / N )  for Adaline learning (A = 0). 
me solid lines refer U) randomBoolean functions and the dashed l i n s  refer to linearly- 

h."^ti^"" 
. " p a O " ' L  L"II.LI".Y. 

3. The " d a t i o n  function 

As an example, let us calculate the following correlation function 

where 

In particular, C( t , t )  will give us the q ( t )  function. Let us denote by Co(t,tt)  
,,I= LuIIGIaLLIuII I U L I c . L I U I I  IY' I I 1 I I " u L I I - Y u u I M I I  LUII*,IUII~. ,U "CLGLII,",G bo( s, 6, wc 

introduce two systems; S, depending on the parameters A, and A,, and 3, depending 
on i1 and ;\,. The Hamiltonian is 

*CO -..-I".:"" fi."^L,..- c,.- -...A,.- ""In.." A...,..:,."" Th ,In..,. -:.... ,-7 I .  :, 

where E and E have the previous form of equation (6), Ai and xi (j = 1,2) depend 
on s and 2 respectively, equation (8). 

We need the external field H to extract the desired term, equation p9), by a 
derivation of the free energy and after that we set H = 0. On the other hand, when 
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H = 0, S and s are independent their minima are given by the previous equations 
(21) and (22). 

The method of calculation of the free energy with 'H (equation (30)) is as before, 
but the non-zero H introduces an interaction between those replicas of S and 8 
whose replica indices are identical, so we have 

where B! - and E - are 2n x 2n matrices, and A1 is a 2n vector 

H 1 - a  - -  

A1 = ( A 1  ,... , A 1  I& ,... . A l )  
and 

The saddle points are taken with respect to T O R ,  qOR, Pap,  G a p ,  cap and a,@. 
The replica symmetric ansatz is the same as before, equation (16), wth the additional 
relations 

is a n x n unit matrix - 

(33) 

Since co and c1 characterize the interaction between the replicas of the two 
systems (S and 3) and in the H = 0 case we can suppose this interaction to be 
independent of the choice of replica indices, the difference co - cl should vanish 
as H + 0. The same is true for a. - al.  Bearing in mind these relations, after 
determining the eigenvalues of B - and 5 we arrive at the value of Co(s, i) (detah 
are left to the reader) 

U6 C0(s,i) = - A 1 i l  
a - U U  

(34) 
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where U depends on s and 6 depends on S but both functions are given by the 
equation (U). 

Ib carry out the inverse Laplace transformation we introduce the notation 

g = u / &  G = i i / &  (35) 

and rewrite CO (s , S )  as 

Alii g B  
C , ( S , S )  = - 

1 -sB 

Now the inverse Laplace transform with respect to s and S can be performed 
separately. With the notation 

L-'[g"(s)](~)d~ (37) 

we have 

The functions C , ( t )  can be calculated 

1 - e - ( b - o c o a J ) l  
sin ff sin(nff) 

Gn(t)  = a i f f d f f  T b-acos29  (39) 

where a = 2 6  and b = 1 + a + A, where X is the 'static' value of A, (A, = X + 5). 

First calculating the sum y" sin(nff) sin(nff') in equation (38) and then taking 
the limit y - 1 gives a Dirac's delta function times $, so finally we have 

For the Adaline case, figure 2 shows the q ( t )  = C,(t,t) function and the M ( t )  
function for a = 0.9, where M ( t )  is simply 

L 

M ( t )  = -Gl(t) a (41) 

see equations (24,35,37). 
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Plgvrr 2. me time evolution of M ,  equation (41), and q, equation (40) at t = f', for 
random-Boolean tunaions at OL = 0.9 in the Adaline-learning case. The static value of 
7, i.e. lhe limit f 3 m, can be obtained from equation (24). Since M ( t  -+ m) = 1 
for a = 0.9, sse Ggure I ,  we do not have to normalize the M ( t )  funclion. 

4. Linearly-separable functions 

A linearly-separable function is defined through a reference (or teacher) percep- 
tmn with a weight vector {Fi)+,,,,,,,: to a given input {si), the mrrect answer is 
the sign of CiFiF;Ei. 'RI fix the length of the teacher perceptron, we suppose that 

A natural quantity characterizing the learning performance can be the cosine of 
iV-lC.73. = 1. 

I $3 

the angle between the weight vectors of the 'teacher' (2) and the 'student' (g) 

where we have used the fact that p = k X i  w' is a self-averaging quantity. The so 
called generalization ability (P,), which gives the probability of the correct answer 
from the student perceptron to a new randomly-chosen input, can be expressed by F 
see [14] 

P 9 = 1 - ( l / r ) cos - 'F .  (43) 

lb describe the learning process in this case, we use the Same method as before, 
taking the cost function of equation (6), we calculate the averaged-free energy with the 
help of the replica-symmetric theory. The only difference is in the way of averaging. 

Since the output C" is not an independent-random variable, but is given by the 
reiation 
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we have to be more careful when we average terms like 

where bi, is a quantity of order 1. The averaging in equation (45) can be performed 
if N goes to infinity and Fj o( O(1) V j .  In this limit both the quantities, zl = 
& x i  biy t :  in equation (45) and z2 = &E, F j t ;  in equation (44), are Gaussian 
variables, although they are correlated as 

1 
(Z,Z,)~ = - x F j b j .  

N J  

In this way, the averaging in equation (45) according to t - s can be replaced by 
the averaging over z1 and z2, giving 

From now on, the calculation continues in the standard way and we will have the 
same order parameters as before, equation (19), plus a new one coming from the 
argument of the erf(z) function in equation (47) 

with its weight function s. We can see that in the zero temperature limit y is just the 
numerator of equation (42). 

'Ihe free energy is 

1 f = - R 9 -  2 2 ;) + YS+ W P ,  R,s) + @ ( v , q , y )  - :A: + fo(P) 

In the p - 00 limit, the saddle-point equations are 

a 
p =  - 

A, + P 1 + 9  
1 

Lp=- 
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where the first two equations are the same as in the random case, equation (21), 
giving the same expression for the U (  A,) function, equation (25). 

The other quantities of interest, such as y, q and M, can be expressed by this 
U( A,) function 

For the static Adaline problem, Le. A, = 1 and A, = 0,  the length of the weight 
vector w, Le. q. equation (52), and the average stability, i.e. M ,  equation (53), 
behave qualitatively as in the random case, equation (24), for a a U( 1); only a small 
correction is due to the linear separability of the input patterns. For a > 1, this 
property of inputs becomes important, and both q and M tend to finite values as 
a -t 00, rather than of tending to zero, showing that the network was able to learn 
something, figure 1. The average relaxation time, defined by means of M, equation 

disappears for a -+ m 
+j, & suT,Gai t're of ,2iiboi-il fiiE(-~oifi, qiG;iGfi <q, n,e sma:; miiei;iofi 

a < l  
2 a  1 - a  

( 1  - a), 

2 a - 1  ) a > l .  a 
( 1  -a), (l -= 1 + ( 2 / R ) ( a - 2 )  

5. The generalization ability 

Although the above quantities, equations (51-54), characterize the learning peifor- 
mance, the most important quantity is the generaiization abiiity of the network, 
equation (43), which will be. measured by F, equation (42), in the rest of the paper. 

In the static case we can use equations (51) and (52) directly to obtain the 
F( A,, a) function 

where U is the previous expression of equation (25). Since F depends on A,, it may 
be worth asking whether F is maximal at a given value of A,. Solving the equation 
BFIBA, = 0 gives 

(56) A y  = Cn - 1 

for any value of a = p / N ,  and at this point 
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This generalization ability should be compared to the Adaline case [14], where 
A, = 0, giving 

a ( 1 - a )  
f a - a  

f n + a - 2  

a < l  

a > l  
FAd= 

a ( 1 - a )  
f a - a  

f n + a - 2  

a < l  

a > l  
FAd= 

and to the Hebb case (14,151, which can be recovered in the limit A, - 03 where the 
learning process stops in a very short time, making zui proportional to ai. equation 
(lo), which is nothing but the Hebb rule 

(see figure 3). 

F1gui-e I The m i n e  of the angle between the Wight vecton of the teacher perceptron 
(2) and of lhe student perceptron (U) as a funclion of 01 = p/n for linearlyeparahle 
functions equation (42). The solid line denotes the network with optimal weight decay. 
me dashed line and the dashdotted line refer to the Adaline learning (A = 0)  and to 
the Hehh rule (A - m) respectively. 

In the h i t  a B 1 ,  both Fopl and FAd behave like dl - ( s / 2 a ) ( l  - 2 / ~ ) ,  so 
using Xip'  instead of A, = 0 makes no difference 41 this limit. The region where 
non-zero A, can be useful may be estimated by the region where the inequality 
FAd < FHebb holds, Le. when the Adaline rule is even worse than the Hebb rule. 
This happens if 

1 - $. < (a- 1 )  < f n -  1.  (60) 

?b describe the time evolution of F, we need the functions y(t) and q ( t ) .  The 
former can be obtained by the inverse Laplace transformation of equation (51) with 
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the substitution of equation (S), giving y ( t )  = m C , ( t ) .  The latter requires 
the calculation of the correlation function of equation (28). The Laplace transform 
of C( 1 ,  t') can be calculated in the same way as in the random case, giving 

where we have used the notation of the previous section. The inverse Laplace 
transformation is made with the help of the same trick as before equation (36), so 
we have ... 

2a C(t , t ' )  = 1 + 2;; C0(t,1') - ,C,(t,t') ( a 2 >  

where Co(t,t') is given by equation (40) and 

s in2d  sin2 0' 
cos 19' - cos 29 

1 - e - ( b - o e o s t s ) t  1 - e - ( b - a c o s d ' ) t '  
X 

( b - a c o s t 9 )  (b-acos29' )  (63) 

where a = 2 6 ,  b = 1 + a + X as before, and J means principal mlue integration. 
Fortunately, if t = t', the second term in C,(t , t ' )  disappears (because it changes 
sign for 29 - q ( t )  = C ( t , t )  is given by a one-dimensional integral. The 
F ( t )  = y ( 1 ) /  q ( t )  function for a = 0.9 and for various values of A, is shown in 
figure 4. 

o'6al wo.9 
h L - 1  

I 
0 20 40 60 80 I00 

F@m A 'The generalization ability, measulrd by F. qualion (42), as a function of 
the training time for 01 = 0.9. For the Adaline laming (A = 0, dashed line), I h C K  is  
an wertltting effect in time: a1 t % I 8  the generalization ability b at a madmum. 'The 
optimal decay mures a smooth approach Lo the optimal generalbarion (A = 5 - 1, 
solid line); higher decays give wrse generalization (e.g. A = 3,  dash-dotted line). 
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In the limit t - 0,  we get back the generalization ability of the Hebb rule 
(equation (59)), as we should, and for t * 00, we arrive at the static value of F 
(equation (55)). If the latter is the smaller, we can expect an overfitting phenomenon 
in time. The generalization ability fust increases and later decreases to its static value. 
For the Adaline learning (A, = 0), this ‘overfitting region’ of a b given by equation 
(60). Unfortunately, there is no simple analytical formula for the optimal training 
time, so this quantity can only be obtained numerically. 

6. Conclusion and possible extensions 

We have shown that the continuous-time approximation of the learning process in 
single-layer perceptrons can be treated by the replica method. The crucial pint  of 
the approximation is that if the dynamical equations (equation 5 )  are linear in the 
dynamical variables wi, we can use the replica method on the Laplace-transformed 
equations. As a demonstration, we calculated the dynamical properties of the Adaline 
rule extended by a decay factor for the case of random and linearly-separable-Boolean 
functions. For the latter, an optimal decay, A;pt = $?r - 1, was found in the sense 
that this decay optimizes the generalization ability of the network. 

For the original Adaline d e ,  the poor generalization properties near a = 1 
are due to the long training time, and an appropriate training time can give as 
good a generalization as we have for the optimal decay (&e figure 4). We have 
found that these overfitting effects occur mainly in the region a E (a-, a+), where 

A straightfonvard extension of the present model could be the case of the ‘unre- 
liable teacher’. There are several ways of defining an ‘unreliable teacher’ [SI; here we 
take only the simplest case, where instead of equation (44) the outputs in the training 
set are 

a* = 1 f (i?r - I).,: 

where c, = fl with probability (1 f c) /2 and constant during the learning process. 
Equation (64) means that, for some inputs, the teacher does not know the correct 
answer but he k faithful to the incorrect ones. In this case, the average free energy 
differs from that of equation (49) only in the expression of ‘3, instead of the term 
-2\/27;;yA, we have e times the same expression. This means that in the equations 
(51)-(55) we have to replace 

The most important changes due to c < 1 are those in Aopt(c) = rr /2ez  - 1 and 
in the width of the ‘overfitting region’ a*(€) = 1 f (n/2c3 - 1): we need bigger 
decay and the overfitting region becomes wider. Other types of noises in the learning 
process can be treated in a similar fashion. 

It k a more difficult matter to apply this method to the cost functions of the type of 
equation (4). For example, ifwe choose E, = ~ , ( 1 - A , ) 2 0 ( 1  - A v )  (the so called 
Matron rule), and introduce new dynamical variables V, := ( 1  - A,)@( 1 - AV),  
the equations of motion will be 

by m c  and Z / R  by 2 c z / r .  
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where Q,, = N-’ is the overlap matrix of the input pattems. If we are 

interested only in the static properties, the expression [. . .] in equation (65) is a good 
Lyapunov function; the minima of this expression with the constraint V, > 0 ( p  = 
1, . . . , p) give the stationary solutions of equation (65). This problem can be solved 
by the replica method. On the other hand, the constraint of V,(t) > 0 makes the 
Laplace transformation useless, we cannot use equation (65) to describe the dynamics. 
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